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Transient dynamics of on-line learning in two-layered
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Institut für Theoretische Physik, Julius-Maximilians-Universität, Am Hubland, D-97074
Würzburg, Germany

Received 1 March 1996

Abstract. The dynamics of on-line learning in neural networks with continuous units is
dominated by plateaux in the time dependence of the generalization error. Using tools from
statistical mechanics, we show for a soft committee machine the existence of several fixed
points of the dynamics of learning that give rise to complicated behaviour, such as cascade-
like runs through different plateaux with a decreasing value of the corresponding generalization
error. We find learning-rate-dependent phenomena, such as splitting and disappearing of fixed
points of the equations of motion. The dependence of plateau lengths on the initial conditions
is described analytically and simulations confirm the results.

1. Introduction

Layered neural networks [1] are used for implementing input–output maps of relevance to
classification and regression tasks. Already networks with one hidden layer are sufficient
to represent nontrivial scalar functions ofN -dimensional variables [2]. However, the
convergence of the learning process is typically very slow due to plateaux in the time
dependence of the order parameters describing the state of the neural network (e.g. [3]).

While there exist exact theories describing the asymptotics of the learning process
for two-layer neural networks [4–7], little is known about the dynamical properties for
transient learning times. An understanding of the dominating processes that lead to the slow
convergence in the learning process is essential for an eventual construction of algorithms
that overcome these deficiencies. In this paper we examine this crucial regime for the case
of on-line gradient descent learning, which is a standard algorithm widely used in practice
[1, 8].

The generic architecture of networks discussed here consists ofN input units,K hidden
units fully connected with the input units, and one linear output unit; for simplicity,
the hidden-to-output weights are fixed at unit strength (‘soft committee machine’ [4, 5]).
However, the obtained results will be similar for networks with variable hidden-to-output
weights [6].

In the theory of on-line learning [1, 9–13] it is assumed that a sequence of uncorrelated
examples{ξµ, τµ} of an unknown ruleτ(ξ) is provided by the environment. The example
input vectors are denoted byξµ, andτµ is the corresponding correct rule output. Throughout
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this paper we consider input vectorsξ ∈ RN with independent identically distributed
components of zero mean and unit variance.

The rule defined through a teacher network withM hidden units with a nonlinear
activation functiong is learned by a student network of the same architecture withK

hidden units. The weights of the teacher network are denoted by the vectorsBn ∈ RN ,
n = 1, . . . , M, those of the student byJi ∈ RN , i = 1, . . . , K. Given a specific teacher
network, the generalization error is

εg({Ji}) = 〈ε({Ji}, ξ)〉ξ with ε({Ji}, ξ) = 1
2(σ − τ)2 (1)

where σ = ∑K
i=1 g(Ji · ξ) is the student andτ = ∑M

n=1 g(Bn · ξ) the teacher output,
〈· · ·〉 denoting the average over the input distribution [14, 15]. In the thermodynamic limit
(N → ∞) εg only depends on theorder parameters

Rin = Ji · Bn Qik = Ji · Jk n = 1, . . . , M i, k = 1, . . . , K. (2)

Recently, learning by on-line gradient descent was studied in this framework [5, 6]. In this
setting, the variation of the student weights under presentation of example{ξµ, τµ} is given
by

Jµ+1
k = J

µ

k − η

N
∇Jk

ε({Jµ

i }, ξµ) (3)

which leads to the following differential equations for the order parameters:

dRin

dα
= η〈δiyn〉 dQik

dα
= η 〈δixk + δkxi〉 + η2〈δiδk〉 (4)

whereα = µ/N is used as a continuous time, and

xi = Ji · ξ yn = Bn · ξ δi = g′(xi)

[ M∑
n=1

g(yn) −
K∑

i=1

g(xi)

]
. (5)

The averages are over the(K +M)-dimensional Gaussian distribution of the{xi, yn} which
is determined by the correlations

〈xixk〉 = Qik 〈xiyn〉 = Rin 〈ymyn〉 = Bm · Bn ≡ Tmn. (6)

The functiong(x) = erf(x/
√

2) is used as a sigmoid activation function of the hidden units
[4]. With this specific choice, the averaging in the equations of motion (4) can be performed
analytically for generalK and M, providing an exact description of the dynamics of the
learning process in the thermodynamic limit, see [4, 5] for mathematical details.

In the following we will refer to a rule withTnm = δnm as anisotropic teacher, and to
one withTnm = nδnm as agraded teacher[5]. However, we will generally concentrate on
isotropic teachers as the examined plateau phenomena come out most clearly when learning
a rule given by an isotropic teacher. We expect, however, that most of the described
phenomena also occur when arbitrary sets of teacher vectors are regarded.

2. Plateau states—significant phases of the learning process

2.1. General behaviour during the learning process

A typical learning curve of a soft committee machine with two hidden units learning a rule
given by an identical network with an isotropic set of teacher vectors is shown in figure 1;
we have chosen initial values of the order parameters similar to those of randomly drawn
teacher and student vectors:

Rin(0) = URin
[0, 10−12] Qii(0) = 0.5 Qik(0) = UQik

[0, 10−12] ∀i 6= k (7)
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where the expressionsURin
[0, X] and UQik

[0, X] denote arbitrarily chosen (different)
numbers of the orderO (X) from the corresponding intervals. ForN → ∞, the initial
fluctuations would be exactly zero, but a non-zero value has to be taken as otherwise the
system would be trapped infinitely long in the suboptimal plateau state. In practice, i.e.
for finite N , they are usually much larger when using randomly drawn weight vectors as
initial conditions. The general importance of the initial conditions will be examined in the
following section.

Figure 1. Time evolution of the generalization error (a) and the order parametersRin (b) (full
curves) andQik (dotted curves) in theK = M = 2 learning scenario with an isotropic teacher
(Tnm = δnm) andη = 1.5. The initial conditions are set according to (7).

In figure 1, the suboptimal plateau appears in the time dependence of both the
generalization error and the order parameters. The ‘success’ of the student, i.e. the time
α at which the asymptotic exponential decay of the generalization error begins, is given
essentially by the plateau length which will be defined in detail later on.

The plateau states correspond to configurations which are very close to certain fixed
points of the set of differential equations (4) for the order parameters. The current
explanation for the observed dynamical behaviour of the order parameters is the following.
There is a unique fixed point which is symmetric in the sense that at least forη � 1 the
relationsRin = R andQik = Q for all i, k, n are valid. The corresponding generalization
error is non-zero, so this symmetric state is called asuboptimal state. During the symmetric
phase, the student vectors are almost identical and have—apart from small deviations—the
same overlap with each teacher vector. This symmetric fixed point is repulsive, so small
fluctuations will cause a specialization of the student vectors towards distinct teacher vectors,
which then leads to the optimal state, e.g.Rin = δin, Qik = δik, εg = 0 for the learning
scenario in figure 1. Later on it will be shown that the system can reveal a much richer
behaviour with the possible appearance of different plateau states which can be approached
in the course of the dynamics (4).

2.2. Definition of the plateau length, relevance of the initial conditions

We now address the question of the plateau length. Near a fixed point, the set of differential
equations (4) can be linearized in terms of the deviations of the order parameters from the
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corresponding values at the fixed point:

d

dα



Q11

Q12
...

R11

R12
...


= F



Q11 − Qfix
11

Q12 − Qfix
12

...

R11 − Rfix
11

R12 − Rfix
12

...


(8)

whereF is a square matrix of dimension [KM +K(K + 1)/2] asQ is a symmetricK ×K

matrix with K(K + 1)/2 independent elements andR an unsymmetricK × M rectangular
matrix.

2.2.1. Results in the thermodynamic limit.The eigenvalues ofF rule the behaviour of the
order parameters for small deviations from their values at the fixed point. The behaviour
of an arbitrary order parameterZ is therefore characterized by

dZ

dα
= λesc[Z(α) − Zfix] ⇔ Z(α) − Zfix = X̃(α0)e

λesc(α−α0) (9)

whereλesc is the eigenvalue that rules the repulsion of the order parameters away from the
fixed point; this is normally the largest positive eigenvalue of the matrixF . Note that, if
the corresponding eigenvector has zero components, different time constants may apply for
different order parameters.̃X is the deviation ofZ from its valueZfix at the fixed point
at some arbitrary reference pointα0 in the plateau after inset of repulsion. The timeαP at
which Z(α) − Zfix exceeds a given valueB > X̃ (which can be chosen arbitrarily) marks
the end of the plateau; we thus have

Z(αP ) − Zfix = X̃eλesc(αP −α0) = B (10)

which leads to the following general expression for the plateau lengthαP − α0:

αP − α0 = 1

λesc
ln

B

X̃
= τescln

B

X̃
(11)

where τesc is called the escape time of the fixed point. The difference in length of the
plateau obtained with different deviations̃X1 andX̃2 is then independent ofB:

αP (X̃1) − αP (X̃2) = τescln
X̃2

X̃1

. (12)

Basically, the initial deviation from symmetry is preserved while approaching the plateau,
henceX̃ at the reference pointα0 in (9) is proportional to theinitial deviationX of the
configuration of order parameters from symmetry according to (7) or (16). In the following
section, however, it will be shown that the actual behaviour in a real learning situation is
still a bit more complicated.

2.2.2. Comparison to simulation data, realistic initial conditions.For a comparison
between simulations and the analytic results forN → ∞ it is not sufficient to fix the
initial configuration of the order parameters only by choosing the student and teacher weight
vectors on average. In a realistic learning problem the initial values of the mutual student
overlapsQik can be fixed to arbitrary precision by choice of appropriate weight vectors.
The initial student/teacher overlapsRin, however, are unknown and cannot be controlled in
a situation with noa priori knowledge about the teacher vectors. In order to demonstrate
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the logarithmic dependence of the plateau length on the initial deviations from symmetry
(12), we now assume that the initial weights of a student with, say,K = 2 hidden units are
generated randomly subject to the constraints

Qii(0) = Q̃ and Q12(0) = Q̃ − X (13)

which corresponds to almost identical student vectors forX � Q̃. In the previous section
it was shown how such a system gets trapped in a perfectly symmetric plateau the length
of which is determined by lnX according to equation (11). Equation (13) then implies

|J1 − J2| =
√

2X (14)

and thus (for example)

R11 − R21 = (J1 − J2) · B1 = A
√

2X. (15)

with the constantA = 0 for random vectors of infinite dimension. However, in any finite
system and for uncorrelated random teacher vectors, theRin themselves as well as the factor
A in (15) will be fluctuating quantities of orderO(1/

√
N), leading to the following initial

conditions which force the system towards the perfectly symmetric fixed point:

R21(0) = R11(0) + UR21[0, XR]

R22(0) = R12(0) + UR22[0, XR]

Q11(0) = Q22(0) = Q̃

Q12(0) = Q21(0) = Q̃ − X

(16)

whereXR = √
2X/N . For simulations and numerical calculations the initial valueQ̃ was

chosen to beQ̃ = 0.5. Thus, the deviations from symmetry in terms of the student/teacher
overlaps are inevitably determined by the choice ofX in equations (13) and (16). According
to (15) they should dominate as

√
X � X and govern the length of the observed symmetric

plateau; in analogy to equation (11) one therefore expects the plateau length

αP − α0 = τescln

(
B

√
N

2X̃

)
= τesc(D − 1

2 ln(2X) + 1
2 ln N) (17)

where the constantD is of the orderO(1) and contains the arbitrarily chosen value of
B denoting the end of the plateau as well as the proportionality constant betweenX and
X̃ at the reference pointα0. Hence, the explicitN -dependence is very weak, yet the
existence of fluctuations in the finite system drastically affects the dynamics. Note that the
naive thermodynamic result (11) is not recovered in the limitN → ∞. Indeed, the observed
length of plateaux in figure 2 (and even more accurately, the difference in length for different
X) is half the value predicted by the naive thermodynamic limit (cf equation (12)).

Figure 2 was obtained by settingR11(0) = R12(0) = 0; the actual plateau length,
however, does not depend on the particular choice ofR11(0) and R12(0), but only on the
small initial deviations of the orderO(

√
X/N) from symmetry. Therefore, not only the

escape time of the fixed point, but also the properties of the initial configuration of the order
parameters, play a crucial role for the plateau length and thus for the duration of the learning
process. This is in contrast to the conjecture of [5], that ‘the specific values assigned to the
order parameters as initial conditions are largely irrelevant’.

The numerical integration of the differential equations (4) with initial values of type
(16) yields learning curves which are in excellent agreement with the simulations. We have
chosen the initial conditions (16) rather than those corresponding to purely randomly drawn
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Figure 2. Logarithmic dependence of the plateau length on the initial deviationsX from perfect
symmetry. As in figure 1, the learning scenario isK = M = 2, Tnm = δnm at a learning
rateη = 1.5, but the initial conditions are set according to (16). The values ofX used in the
simulations (symbols) are (from the left) 10−6, 10−8 and 10−10. The system size isN = 1000
and each curve is an average over 25 runs. They are compared to solutions of the equations of
motion (4) (full curves) corresponding to the same values ofX. Each triplet of curves shows
the time dependence ofεg for N = 1000,N = 500, andN = 200, respectively, for constant
X according to (16), displaying the logarithmic dependence of the plateau length onN . The
logarithmic dependence of the plateau length onX is apparent both in the simulations and in
the solutions of the equations of motion (4).

initial student weight vectors (7) withQii(0) = 0.5 and Q12(0) = X as in this case a
calculation of an asymmetry parameterXrandom

R in analogy to (16) gives

Xrandom
R =

√
1 − 2X

N
≈ 1√

N
(18)

if X � 1. Thus, simulations with initial conditions of type (7) will show noX-dependence
of the plateau length, but only a logarithmicN -dependence which has already been observed
in [4] (cf figure 3 therein).

3. The existence of several fixed points of the dynamics

3.1. General properties, physical validity

For all student and teacher network sizesK > 2 and M > 1 the set of differential
equations (4) reveals several roots, each of which is a fixed point of the dynamical
behaviour of the order parameters. These fixed points are marked by different values of
the corresponding generalization error and different degrees of symmetry. The fixed points
were found by using the multi-dimensional Newton–Raphson method with randomly chosen
initial values of the order parameters; the obtained results are thus the numerical values of
the configuration{Rin, Qik} corresponding to the different fixed points.

The completely symmetric fixed point withRin = R, Qik = Q always appears, but
so do other ones with more irregular values of the order parameters. It must be stressed,
however, that not every fixed point corresponds to a physically valid solution, e.g. for
geometrical reasons the relationQ2

12 6 Q11Q22 must always be satisfied. Many more
similar geometrical constraints of the order parameters can be derived, which are all summed
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Figure 3. (a) Merging of the two suboptimal fixed points of theK = M = 2, Tnm = δnm

scenario. The upper two curves represent the corresponding values of theRin, the lower three
curves theQik values. Full curves belong to the perfectly symmetric fixed point, dotted lines
to the less symmetric one withQii 6= Q12. (b) Rin for one of the unsymmetric fixed points
of the K = M = 3, Tnm = δnm scenario that do not converge towards the perfectly symmetric
configuration forη → 0.

up in the condition that the correlation matrix

C =
(

Q R

RT T

)
(19)

be positive semidefinite, i.e. all its eigenvalues have to be non-negative. If this is not the
case for a certain fixed point, the network cannot be found in the corresponding configuration
of order parameters; the dynamics according to (4) will never approach the state, provided
the initial conditions satisfy the constraint stated above. The number of physically valid
fixed points is shown in table 1 for different learning scenarios in the case of an isotropic
teacher. The number was determined at intermediate values ofη, and only fixed points with
different values ofεg are distinguished.

Table 1. Number of physically valid fixed points with different values ofεg in various learning
scenarios with an isotropic teacher (Tnm = δnm) for intermediate values ofη, as found by the
numerical procedure described in 3.1. The trivial fixed point withQik = 0 for all i, k is not
counted.

K M Classification η Number of fixed points

2 1 over-realizable 1.5 3
2 2 realizable 1.5 3
2 3 unrealizable 1.0 4
3 2 over-realizable 1.0 14
3 3 realizable 1.0 13

The choice of initial conditions then determines which fixed points are actually being
observed as plateau states during the learning process.

3.2. Learning-rate-dependent phenomena

The values of the order parameters corresponding to a certain fixed point vary with the
learning rateη. We restrict ourselves to learning ratesη < ηc, whereηc is the learning
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rate above which perfect learning cannot be achieved for realizable rules [4, 6]. In order to
investigate the validity of theη � 1 approximation in [5], we first examine the behaviour
of the fixed points at small learning rates.

3.2.1. Small learning rates. In the smallη regime, the description in [5] is valid for small
student and teacher networks (K = 2, M 6 2): the two existing suboptimal fixed points
merge to the same symmetric configuration of order parameters, i.e.Rin = R, Qik = Q

(figure 3) in the limitη → 0. From the equations of motion (4) for arbitraryK andM the
existence of a completely symmetric fixed point can be shown analytically in the smallη

regime; a numerical evaluation reveals that it exists as well at intermediate learning rates
at least forK, M 6 20. This is a consequence of the fact that an identity of all student
weight vectors is preserved under application of training algorithm (3) independent of the
particular learning scenario. However, in other learning scenarios with larger networks (K,
M > 3), there are additional unsymmetric fixed points even in theη → 0 limit (figure 3).
These are not taken into account in [5] because there the conditionRin = R, Qik = Q is
used as anansatzwhich then reveals the analytical values ofR and Q. Our approach is
more general, but only gives numerical results.

3.2.2. Intermediate values of the learning rate.The configuration of order parameters
corresponding to a certain fixed point changes with the value ofη. In addition to such
smooth variations, the following striking discontinuous effects are observed.

• Splitting of a single fixed point into two distinct fixed points at a certain valueηs

(figure 4). This bifurcation is non-smooth, but with an infinite slope ofRin(η) at η = ηs .

Figure 4. (a) Splitting of a single fixed point into two distinct fixed points atη = ηs in the
over-realizableK = 3, M = 2, Tnm = δnm scenario. TheRin of the second fixed point reveal
an infinite slope atη = ηs . (b) Two fixed points in the realizableK = M = 3 scenario with
a graded teacher (Tnm = nδnm), approaching each other with decreasingη, then merging and
disappearing atη = ηd . Single fixed points have also been observed to disappear suddenly at a
certainη value.

• A fixed point disappears for learning rates smaller than a certain value.
• Two fixed points merge with decreasingη. At a value ηd , they both disappear

(figure 4).
These effects show that not even the number of fixed points is a constant for a certain

learning scenario. It should be emphasized that all the effects mentioned above can be
observed within the range of ‘useful’ learning rates, e.g. forη < ηc in the case of realizable
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rules. The instability of the optimal fixed point and the occurrence of attractive suboptimal
states forη > ηc is not analysed here, see [4] for such a discussion for small networks.

These observations give rise to the speculation that it should be very difficult, if not
impossible, to derive a schedule for an optimal, time-dependent learning rateη(α) by means
of a simple variational principle.

3.3. Dynamical effects resulting from the existence of several fixed points

As expected, the existence of several repulsive fixed points results in various dynamical
effects. The first one discussed here is reminiscent of an observation made in [16] in
the context of learning with a committee machine with binary threshold units. In certain
settings (initial conditions, learning rate) the configuration of order parameters can vary
strongly with increasingα while the generalization error remains approximately constant.
This type of behaviour occurs when the initial conditions of the system are such that the
network is subsequently trapped close to several fixed points with decreasing (yet similar)
values ofεg, but completely different sets of order parameters. Such a wave-like evolution
of the generalization error was also observed in [5] for learning from a graded teacher
(Tnm = nδnm), choosing the initial conditions (7).

Figure 5. (a) Time evolution of the generalization error in theK = M = 2, Tnm = δnm scenario
at (from below)η = 1.5, 1.75, 2.0, 2.25 (numerical solutions of the equations of motion (4)).
Initial conditions are set according to (16) withX = 10−10, R11 = R12 = 0, R21 = 0.2 × XR

and R22 = XR , whereXR = (2X/N)1/2 and N = 2000. (b) The cascade-like behaviour is
also observed in simulations (η = 2.0). The simulations shown are single runs of a system with
N = 2000; the corresponding numerical solution of the equations of motion (4) (full curve) is
in excellent agreement with the single run displaying both plateaux.

But even in the isotropic setting withK = M = 2 and Tnm = δnm a cascade-like
learning curve is always found when specific initial conditions are prepared. In figure 5,
this behaviour is shown for different learning rates and the initial conditions (16) which
correspond to almost identical student weight vectors. The value ofX used in figure 5 is
X = 10−10. Following the discussion of the previous section, we chooseXR = √

2X/N

with N = 2000 andR11(0) = R12(0) = 0. In the particular example ofη = 2.0, the system
first ‘visits’ a completely symmetric state given by

R
(1)

fix =
(

0.487 0.487
0.487 0.487

)
Q

(1)

fix =
(

0.606 0.606
0.606 0.606

)
ε

(1)

g,fix = 0.124 (20)

where it would stay trapped forX = 0. Due to the imposed deviations, however, it then
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approaches the less symmetric fixed point with

R
(2)

fix =
(

0.520 0.520
0.520 0.520

)
Q

(2)

fix =
(

1.081 0.133
0.133 1.081

)
ε

(2)

g,fix = 0.0652 (21)

and finally evolves towards the attractive perfect solution withεg = 0. The difference in
‘height’ (ε

(1)

g,fix −ε
(2)

g,fix) is η-dependent and can be rather small, yielding a learning curve very
similar to those described in [16]. This is compared to simulations (figure 5) in which the
value ofX is also fixed to 10−10 by imposing the initial conditions exactly on a set of random
weight vectors by means of a generalization of the Gram–Schmidt orthogonalization. The
cascade-like run through two different plateau states only comes out clearly in single-run
simulations as shown in figure 5, because as a consequence of the finite dimension of the
system, some single runs show this behaviour while others do not, so that the effect is
partially wiped out when averaging over many simulation runs. The fraction of simulation
runs displaying both plateaux is rising with increasingN , which means that the two fixed
points are indeed relevant for the dynamical behaviour of networks with a large number of
input units under realistic circumstances. As in the previous section, the plateau length is
given by (17) and is thus governed by ln

√
X/N . In this setting, non-zero initial values of

R11 andR12 result in learning curves which are identical to the ones shown in figure 5; the
learning curve is determined only by the choice ofX andN .

3.4. The repulsive properties of the fixed points

We have systematically examined the eigenvalues of all the fixed points found by evaluating
the matrixF obtained by a linearization of the differential equations (4) around the different
fixed points. It appears to be a general property that the most symmetric fixed point always
has both the largest positive eigenvalue and the highest number of positive eigenvalues
(or complex eigenvalues with a positive real part), leading to a relatively strong repulsive
behaviour. Regarding the other suboptimal fixed points, we always find at least one repulsive
eigenvalue preventing the student from being caught in a suboptimal stateexcept in one
very special case: in the learning scenarioK = 3, M = 2 there is one quite unsymmetric
suboptimal fixed point with no positive eigenvalue, i.e. once having approached this fixed
point, the student will never escape into the optimal state. However, this situation seems to
appear rarely, and very carefully chosen initial conditions are necessary to encounter this
exceptional fixed point. It is an open question whether the existence of purely attractive
suboptimal fixed points is typical of over-realizable scenarios for largerK andM.

4. Summary and conclusion

We have investigated the occurrence of a variety of fixed points of the dynamics (4) of the
learning process of a soft committee machine withK hidden units learning a rule defined
through a teacher network of an identical architecture, but withM hidden units. Apart
from the completely symmetric fixed point already discussed in [5], several further less
symmetric fixed points of (4) arise in any learning scenario, even in very simple ones with
small values ofK andM.

We have analysed the crucial importance of the initial conditions for the convergence
of the learning process towards the optimal state characterized by a minimum of the
generalization error. We give an analytical expression for the length of the observed learning
plateaux which depends on both the initial deviations of the order parameters from the fixed
point’s symmetry and the escape time of the fixed points following from a linearization of
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the equations of motion (4). The obtained results enable us to extract the finite-size effects
visible when comparing the analytic results to simulations: the initial configuration of the
order parameters must be given exactly not only in the model, but also in the simulations,
in order to obtain comparable results. Our simulations are in excellent agreement with the
behaviour predicted by the thermodynamic model.

In an examination of the variety of fixed points in several learning scenarios we show
that in general, the number of fixed points in a given scenario does not even remain
constant under variation of the learning rateη. The dynamical effects resulting from the
existence of several fixed points, such as cascade-like runs through two or more learning
plateaux after preparing the initial conditions in a special manner, were examined both in
the thermodynamic model (N → ∞) and in simulations.

We then study the repulsive and attractive properties of the observed fixed points of
the dynamics. It becomes clear that nearly all suboptimal fixed points have at least one
repulsive eigenvalue except one very asymmetric one in theK = 3, M = 2 scenario which
is purely attractive despite displaying a non-zero generalization error. For all learning
scenarios taken into account, a completely symmetric fixed point withRin = R, Qik = Q

(i.e. identical student weight vectors) exists which always possesses both the largest positive
eigenvalue and the highest number of positive eigenvalues when comparing it to the other,
less symmetric suboptimal fixed points.

A possible strategy for an efficient reduction of the plateau length is thus to prepare
the initial conditions in the way given by (16) with, say,X ≈ 10−3. This is realizable in
practice as nothing has to be known about the teacher vectors. Then the initial fluctuations
X are still small enough to force the student to approach the most symmetric and most
repulsive fixed point, but also large enough to guarantee a quick escape into the optimal
final state. This could be a successful strategy for obtaining a higher efficiency of the on-line
gradient descent algorithm under rather general circumstances, as the completely symmetric,
highly repulsive fixed point of the dynamics (4) exists for realizable, over-realizable and
non-realizable scenarios.

Combinations of this method with other symmetry-breaking mechanisms [17] should be
examined in order to provide a tool widely usable in practice to obtain a better effectiveness
of multilayer network training. Moreover, it will be interesting to study the effects of the
existence of many fixed points in large networks (K, M � 1), the dependence of the
number of fixed points on the values ofK andM, and the relevance of the fixed points for
the dynamics of the learning process in such more general learning scenarios.
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